Project 3

Bhattacharya Ankita, Bertucci Adrien, Aline Sherman , Kang Shin Heuk

November 29, 2019

(From left) Ankita, Adrien, Sherman, Shin

Overview

[Preliminary work](#page-2-0)

[Purpose of the project & Base work before the imputation](#page-2-0)

[Single imputation: Regression](#page-3-0)

[Methodology](#page-3-0) **Drawhacks**

[Multiple imputation: Bootstrap](#page-5-0)

[Methodology](#page-5-0) [Results](#page-6-0)

[Multiple imputation: Principal component analysis](#page-7-0) [Methodology](#page-7-0) [-The relationship between PCA and SVD](#page-8-0) [-The iterative PCA imputation and its regularized version](#page-9-0) [Results](#page-11-0)

[Conclusion](#page-12-0)

Preliminary work

Purpose of the project

In the case of 40% missing data with MCAR (missing completely at random) mechanism, we want to compare three following imputations: 1) Single regression imputation, 2) Bootstrap multiple imputation, 3) Iterative Principal Component Analysis (PCA) imputation.

Base work before the imputation

- \triangleright Step 0: Log transform wage (Henceforth, waget).
- Step 1: Generate 40% of waget missing data with MCAR missing mechanism $M = 20$ times.
- \triangleright Step 2: For the comparison, compute the estimated bias and the estimated variance for each method.

$$
\textit{waget}_{\textit{missing}} = \hat{\mathit{B}}_0 + \hat{\mathit{B}}_1 \textit{educ} + \hat{\mathit{B}}_2 \textit{exper}
$$

Single regression imputation: Methodology

[IDEA] Use predicted values from the log-linear regression in order to impute the missing values.

Suppose that we predict the missing values of $log(wage)$ - waget by linear regression.¹

 \triangleright Step 1: We build a model from the observed data.

 \triangleright Step 2: Predictions for the incomplete cases are then calculated under the fitted model and are imputed in place of the missing data. This preserves the relation between $log(wage)$, educ and exper : an advantage over mean imputation. Btw the formula for estd. variance does not look correct to me - maybe I am wrong

$$
\textit{waget}_{\textit{missing}} = \hat{B}_0 + \hat{B}_1 \textit{educ} + \hat{B}_2 \textit{exper} \tag{1}
$$

[Imputation performance]

Estimated bias $\frac{1}{M}\sum_{m=1}^M(\hat{\beta}^m_{educ}-\hat{\beta}^{\text{C}}_{educ})\approx 0.1340144$ Estimated Variance $\frac{1}{M}\sum_{m=1}^{M} \widehat{var}(\beta_{educ}^{m}) \approx 0.07118289$ Both bias and variance are relatively large compared to our later tests.

RegImp_list < −regressionImp(waget ~ educ + exper, data = amputed_list[\)](#page-2-0) □ ▶ « 同 ▶ « ミ ▶ « ミ ▶ » ニ

4 / 14

¹We used *regressionImp* (VIM package) which directly imputes missing values in *waget* by the predicted values. tilde not showing below.

Single regression imputation: Drawbacks [Q1]

- In using fitted values, single regression imputation disregards the error term around the coefficients of educ and exper, which leads to an overestimation of the correlation between the explained and explanatory variables. We are thus likely to have biased parameters of regression (Tsikritsis, 2005).
- \blacktriangleright Naturally, the coefficients from the regression imputation data would have a lower estimated variance as a result.
- \blacktriangleright There are a few advantages of single regression imputation. For example, it can be used when the data contains highly correlated variables. See Lodder (2013) for details regarding advantages of single regression imputation.

Regression imputation underestimates variance and overestimates correlation. This is visible in our plot, as the imputed values are highly correlated with educ, and their spread is not as large as teh original (blue) data.

We can also observe that regression imputation fails to replicate any heteroskedasticity in the data.

red: imputed data, blue: amputed data, gray: original dataset

KORK@RKSERKSER

Bootstrap Multiple Imputation: Methodology [Q2]

[IDEA] Impute multiple times by chained equations.²

MICE, the package we use, uses iteration for each imputation.

- \triangleright Step 1: Impute using bootstrap regression. A new dataset is created using nonparametric bootstrap.
- \triangleright Step 2: Run another bootstrap regression on the imputed data, and regression imputation is done for the missing values.
- \triangleright Step 3: Repeat Steps 1 & 2 until convergence. There is no clear method of knowing if MICE algorithm has converged (Buuren), so we run 5 iterations.

Multiple Imputation[Q2, Q3]

Multiple imputation creates several datasets of values to replace missing data.

 \triangleright Benefit: Multiple imputation allows a level of uncertainty for each missing value (Graham, 2009). Variance is measured within a dataset (points with same shade) as well as variance between datapoints (same color). two sets of imputations

mean & var for each iteration

²We use "mice" package and the command mice(dataset, $m=B$, method[="n](#page-4-0)[orm.](#page-6-0)[bo](#page-4-0)[ot"](#page-5-0)[\)](#page-6-0) $Q \cap C$

Bootstrap cont. & Results [Q2]

Nonparametric Bootstrap Regression

- Bootstrap samples: iid samples $X = (X_1, ..., X_n)$ of size n are generated by drawing independent observations with replacement from the dataset.
- \triangleright From each sample, a linear regression is ran, and imputed values are generated.
- \triangleright Benefit: Nonparametric bootstrap decreases bias induced by patterns in missingness. This is because sampling with replacement creates missingness that is independent.

[Imputation performance] $\frac{1}{M}\sum_{m=1}^{M}(\hat{\beta}_{i}^{m}-\hat{\beta}_{i}^{C})\approx-0.081863704$ $\frac{1}{M}$

The heteroskedastic variance fits the amputed datapoints better than regression imputation.

Calculation of Variance in Multiple Imputation: $\beta_i^m = \frac{1}{B}\sum_{b=1}^B \hat{\mathsf{Var}}(\hat{\beta}_b) + (1+\frac{1}{B})\frac{1}{B-1}\sum_{b=1}^B \left(\hat{\beta}_b - \hat{\beta}\right)$

this formula accounts for variance between imputations and variance between observations

$\frac{1}{M}\sum_{m=1}^{M}\widehat{var}(\beta_i^m)\approx 0.0001871368$

7 / 14

Principal Component Analysis [Q3]

[IDEA]

- \triangleright PCA aims to create a set of components (principal components) such that the variance between components is as large as possible while the distance between components and original data is minimized.
- \blacktriangleright These components correspond to the imputed values we will generate.

- \triangleright Observe: if we took the mean of the projected principal components, they would be equal to the waget vector in the variable representation. This is the minimization of distance between the data and imputations.
- \triangleright Observe: The principal components are as far away from each other as possible while still being correlated with the other variables.
- \triangleright For high-dimensional data, PCA will use dimensionality lower than that of the data if several variables are highly correlated.

Methodology: Relationship Between PCA and SVD³ [Q3]

1) PCA: Principal Component Analysis

Principle Component Analysis uses SVD to calculate a set of eigenvectors for covariance, referred to as principle components.

- \triangleright organize data into an n x m matrix, $n=$ observations, $m =$ variables. (for us, $n=74661$ m=3)
- \blacktriangleright subtract mean for each variable, in order to normalize for SVD
- \blacktriangleright Calculate the SVD

PCA Assumptions

- Linearity
- Low variance is noise, high variance is structural (strong assumption, often incorrect)

• Principle components are orthogonal: allows linear algebra techniques like SVD to be used

2) SVD: Singular Value **Decomposition**

SVD is a method of computing an orthonormal basis V for the data we have. This orthonormal basis is used to generate values for the missing values.

- \blacktriangleright Data: X, an $n \times m$ matrix where $X^{T}X$ has rank r (the number of principal component).
- Find \hat{v}_i , a set of orthonormal eigenvectors s.t. $(X^{\mathcal{T}}X)\hat{v}_i = \lambda_i \hat{v}_i$.
- Then $\sigma_i = \sqrt{\lambda_i}$ is the *singular values*.
- It Let $\hat{u}_i = \frac{1}{\sigma_i} X \hat{v}_i$, and denote $V = [\hat{v}_1 \quad \hat{v}_2 \dots \hat{v}_r]$ and $U = [\hat{u}_1 \quad \hat{u}_2 \dots \hat{u}_r]$
- **Decompose** $X = U\Sigma V^T$ where Σ is a diagonal matrix with descending diagonal order $\Sigma_{11} > \Sigma_{22} > \cdots > \Sigma_{rr}$

 3 Theoretically, single value decomposition (SVD) is an ideal method to d[o P](#page-7-0)C[A o](#page-9-0)[n](#page-7-0) [the](#page-8-0) [co](#page-9-0)[nd](#page-6-0)[it](#page-7-0)[io](#page-10-0)[n](#page-11-0) [th](#page-6-0)[at](#page-7-0) [w](#page-11-0)[e](#page-12-0) [only](#page-0-0) care about the numerical accuracy (Shlens, 2014). イロメ イ御 トメ ヨメ スヨメー ヨ

Iterative and Regularized PCA

[IDEA] Iterative PCA

Iterative PCA uses Bayesian probability while iteratively re-generating principal components, allowing it to find components which maximize variance while remaining orthogonal.⁴ Process:

- \blacktriangleright 1) mean imputation is done to generate an initial set of imputated values.
- \triangleright 2) PCA-imputation is performed on the original data, using the previous imputed values as a posterior distribution.
- \triangleright 3) Step 2 is repeated until the values converge.

[IDEA] Regularized PCA

Regularized PCA shrinks imputation steps by multiplying them by the percent difference between the singular values and the estimated variance.

PCA: $\hat{\mu}_{ij}^{PCA} = \sum_{1}^{s} \lambda_s u_{is} v_{js}$ Regularized: $\hat{\mu}_{ij}^{rPCA} = \sum_{1}^{s} \left(\frac{\lambda_s - \hat{\sigma}^2}{\lambda_s} \right)$ $\frac{(-\hat{\sigma}^2}{\lambda_s}\bigg)\, \lambda_s u_{\mathsf{is}} v_{\mathsf{js}}$

⁴ Information contained in the help file for MIPCA function of MissMDA [pack](#page-8-0)a[ge](#page-10-0)

Methodology: Dimension Estimation

Algorithm

- In order to apply PCA, we must specify the number of components for the space. In high dimensional datasets this is an important step, as reducing dimensionality can improve performance.
- \triangleright To estimate component number, we consider 1) The cumulative percentage of variance must be greater than 70%, 2) The eigenvalue of the new component must be greater than 1.

In With determined 2 component ($ncp = 2$), compute eigenvectors from the covariance matrix.

[Imputation performance] $\frac{1}{M}\sum_{m=1}^{M}(\hat{\beta}^m_i-\hat{\beta}^C_i)\approx -0.08186697$ $\frac{1}{M}$

 $\frac{1}{M}\sum_{m=1}^{M} \widehat{var}(\beta_i^m) \approx 0.0001671353$

KORK@RKSERKSER

PCA Imputation: Results⁵

X axis: original value Y axis: imputed value and confidence region. Blue means our confidence interval is for 80% confidence interval of or higher

- \blacktriangleright PCA can be helpful in identifying patterns for large datasets, thanks to dimensionality reduction.
- \blacktriangleright Best representation of variance, as it accurately models the variance between individual datapoints.
- \blacktriangleright PCA is nonparametric, so it has flexibility in use cases.
- \blacktriangleright Regularized PCA can help prevent overfitting

[Disadvantages]

- \blacktriangleright Iterative PCA can have overfitting issues when there are too many parameters, or the level of missingness or noise is too high.
- \triangleright Strict assumptions which may not be true, in which case the results are not valid.

12 / 14

⁵We refer mostly from Shlens (2014).

Conclusion

Performance comparison

We compare the estimated bias and variance of *Educ* coefficient.

Performance (the best to the worst): $PCA \approx Bookstrap \succ Regression$

 \triangleright Both PCA and bootstrap performs significantly better imputation than single regression imputation.⁶. We conclude that with MCAR mechanism with 40% missing data, using PCA and Bootstrap is preferred to single regression imputation.

Additional remark

- It may be a better idea to not use these imputation especially when a strong prior is known (i.e. Death from horse kick is likely to have Poisson distribution as a strong prior.).
- \triangleright When there is no time constraint to complete PCA, always choose SVD as it produces more accurate principal components

 6 100 $\frac{(0.1334-0.08)}{0.1334}$ $\approx 38.6\%$ [sm](#page-13-0)[all](#page-11-0)er b[ia](#page-11-0)s, and 100 $\frac{(0.07063-0.0001)}{0.07063}$ $\approx 99.9\%$ smalle™v[ar](#page-13-0)ia[nc](#page-12-0)[e.](#page-13-0)

References

- ▶ Graham, J. W. (2009), "Missing data analysis: Making it work in the real world," Annual review of psychology, 60, 549–576.
- ▶ Jonathon Shlens (2014), "A Tutorial on Principal Component Analysis," Google Research.
- \triangleright Nikos Tsikriktsis (2005), "A Review of Techniques for Treating Missing Data in OM Survey Research", Journal of Operations Management, 24, 53-62.
- Stef van Buuren (2012), "Flexible Imputation of Missing Data", Chapman & Hall Interdisciplinary Statistics Series.